

BACKGROUND

Post Traumatic Stress Syndrome (PTSD) is highly associated with Metabolic Syndrome (MetS), and PTSD can mimic MetS in its presentation along with its own defining factors (Miranda et al, 2022; Llhua et al, 2020; Weiss et al, 2011). Comorbid conditions associated with PTSD may either cause PTSD or arise from PTSD due to the initial or series of trauma events that generate acute or chronic symptoms (Mellon et al, 2018). Those include cardiovascular disease, immune dysfunction, cancer, and other psychiatric diseases (Mellon et al, 2018). MetS includes diagnosis of a number of the following conditions: hypertension, abdominal obesity, elevated triglycerides, reduced HDL cholesterol, and glucose dysregulation (Abou Ziki and Mani, 2016). This literature review explores biomarkers, genes, and interventions in these connections and adds to previous research by one of the authors (Coomes, 2021).

RESEARCH OBJECTIVES

This purpose of this research is to explore to the inflammation, blood sugar regulation, hormone, and genomic relationships between PTSD and MetS. This will also include metabolic and neurotransmitter relationships as well to provide stronger evidence for nutrition interventions in the care of these conditions.

METHODS

For this literature review, significant exploratory assessment of previously published or nonpublished research was used to compile evidence and data on PTSD and MetS. To assess direct correlations, associations, and causal relationships, databases such as Google, Google Scholar, and PubMed were used with the following search terms: "PTSD," "Metabolic Syndrome," "research," "nutrition" along with specific names of biomarkers to find direct evidence on these topics along with reproducibility in research to establish accurate directions and evidence in the relationships.

RESULTS

The charts to the right and relationships shown below help to show the evidence that came out of this research, and it's important to realize the increasing strength of the metabolic presentation in PTSD in consideration of future treatment options and plans. Increased inflammation can both influence the risk and expression of PTSD. PTSD increases risk for autoimmune diseases and other comorbid diseases (Anderson, 2016). While cortisol is often found to be decreased in chronic PTSD, the initial increases of cortisol that generates hypothalamus-pituitary-adrenal (HPA) axis dysfunction can lead to hippocampus (memory) issues that increases risk for PTSD and Alzheimer's Disease (AD), and it has been noted that this relationship is important for future treatments (Griffin et al, 2014). These relationships are shown below.

Pre-trauma inflammation \rightarrow PTSD \rightarrow Chronic Inflammation PTSD $\leftarrow \rightarrow$ Inflammation

PTSD & MetS \rightarrow Increased risk of Cancer and Autoimmune Disease

 \uparrow Cortisol \rightarrow \uparrow Hippocampus Dysfunction & Atrophy \rightarrow PTSD & AD

PTSD & Metabolic Syndrome: The Inflammation, Blood Sugar Regulation, Hormone, & Genomic Relationships with Nutrition Interventions

Dr. Jennifer Coomes (DCN) and Dr. Noel Aldrich (PhD)

Bastyr University (BU) and Maryland University of Integrative Health (MUIH)

	PTSD Biomarkers	MetS Biomarkers	Citations	INTER
	Homocysteine INCREASED	Homocysteine INCREASED	Fu et al, 2019; De Vries et al, 2015	
	CRP INCREASED	CRP INCREASED	Swart et al, 2021; Wang et al, 2017; O'Donovan et al, 2017; Anderson et al, 2016; Michopoulos et al, 2016	
	IL-1β INCREASED	IL-1β INCREASED	Miranda et al 2022; Chair et al, 2021; Smith et al, 2021; Kim et al, 2020; Abdelazeem et al, 2021; de Oliveira et al, 2018; Wang et al, 2017; Neigh and Ali,	
	IL-4 BOTH	IL-4 INCREASED	2016; Leclercq et al, 2016; Anderson et al, 2016; Mirhafez et al, 2015; Newton et al, 2014; Griffin et al, 2014; Gola et al, 2013	
	IL-6 INCREASED	IL-6 INCREASED		
C		IL-10 INCREASED		AI
io.	IL-12 INCREASED	IL-12 INCREASED		
lat	TNF- α INCREASED	TNF-α INCREASED	Miranda et al 2022; Kim et al, 2020; Neigh and Ali, 2016; Anderson et al, 2016; Gola	
มน	ΤΝF- β ΒΟΤΗ	TNF-β INCREASED	Rane, 2013	
lar	INF-γ INCREASED	INF _Y INCREASED		
Inf	WBCs INCREASED	WBCs INCREASED	Ajdacic-Gross et al, 2021; Koraishy et al, 2019; O'Donovan et al, 2017; Anderson et al, 2016	
	Neutrophil Lymphocyte Ratio	NLR INCREASED	Miranda et al 2022; Sousa et al, 2022; Mohan et al, 2021	
	(NLR) INCREASED		Smith et al, 2021; Wang et al, 2017;	
	Th2 INCREASED	The ROTH	Anderson et al, 2016; Griffin et al, 2014	
	Th17 INCREASED	Th17 INCREASED		
	T-regs DECREASED	T-regs DECREASED		
	Fasting Plasma Glucose (FPG)	FPG INCREASED	Miranda et al 2022; Kong and Cho, 2019; Annani-Akollor et al, 2019; Abou Ziki and Mani, 2016; Shpakov et al, 2015;	FO
Ξ	INCREASED	HbA1c INCREASED	Rosenbaum et al, 2015; Nowotny et al, 2010; Dadona et al, 2005	
lis	HbA1c INCREASED		Miranda et al 2022: Nemet et al 2022: Fan	
po	Total Cholesterol INCREASED	Total Cholesterol INCREASED	et al, 2019; Paredes et al, 2019; Abou Ziki and Mani, 2016; Michopoulos et al, 2016; Kong and Cho, 2019; Anderson et al, 2016: Shakov et al, 2015; Bosenbaum et	
eta		LDL-C INCREASED	al, 2015; Talbot et al, 2015; Dadona et al, 2005	Dig
Σ	Trialvcerides INCREASED	Trialvcerides INCREASED		
S	Blood pressure INCREASED	Blood pressure INCREASED	Park and Khattar, 2023; DiNicolantonio and O'Keefe, 2021; Williamson et al, 2021; Abou Ziki and Mani, 2016; Edmondson et	
uo	Heart Rate INCREASED	Heart Rate INCREASED	al, 2018; Kangas et al, 2018; Kang et al, 2017; Chang et al, 2016; Michopoulos et al, 2016; Gandubert et al, 2016; Anderson et al. 2016: Rosenbaum et al. 2015: Farr et	
ati	Respiratory Rate INCREASED	Respiratory Rate INCREASED	al, 2014; Rogowski et al, 2009; Shalev et al, 1998; Bryant et al, 2008; Blessing et al, 2017; Bedi and Arora, 2007; Shah et al, 2012	
Inf	Heart Rate Variability (HRV)	HRV DECREASED	2013	
Sec		DMI Normal to Obaca	Shi et al, 2020; Masodkar et al, 2016; Gandubert et al, 2016: Farr et al, 2014;	
<u>لا</u>	Waist circumference INCREASED	Waist circumference INCREASED	Abou Ziki and Mani, 2016	
0 B	Sodium UNCLEAR	Sodium BOTH	Miranda et al 2022; DiNicolantonio and O'Keefe, 2021; Williamson et al, 2021; Arenson and Cohen, 2017	
Su	Chloride DECREASED	Chloride BOTH		Neuroin
pc	Potassium INCREASED	Potassium DECREASED		
Ŏ	Calcium INCREASED	Calcium DECREASED		Deto
\mathbf{m}	Anion Gap INCREASED	Anion Gap INCREASED	Miranda et al 2022; Malan-Muller et al,	
			Aaseth et al, 2019; Abou Ziki and Mani, 2016: Michopoulos et al, 2016: Shoakov et	
	Leptin INCREASED	Leptin Born	al, 2015	
ST	BDNF INCREASED	BDNF INCREASED	Blessing et al, 2017; Yang et al, 2018; Rana et al, 2019; Abou Ziki and Mani, 2016: Golden et al, 2010	
tte	Insulin INCREASED	Insulin INCREASED in blood,	Shpakov et al, 2015; Nowotny et al, 2010; Rao et al, 2014; Aaseth et al, 2019; Blessing et al, 2017	
, mi	HOMA-IR INCREASED	DECREASED in brain		
INS		Insulin resistance INCREASED		
tra		Insulin sensitivity DECREASED	DiNicolantonio and O'Keefe, 2021; Pan et	
nrc	CORTISOI DECREASED	Cortisol INCREASED	Al, 2020; Michopoulos et al, 2017; Michopoulos et al, 2016; Gandubert et al, 2016; Wingenfeld et al, 2015; Griffin et al, 2014; Jeong, 2012; de Kloet et al, 2008;	C
Vel	Norepinephrine INCREASED	Norepinephrine INCREASED	Michopoulos et al, 2016	Nu
জ	Dopamine DECREASED	Dopamine DECREASED	Pijl and Romijn, 2006	
S	Serotonin BOTH	Serotonin DECREASED	Seidemann et al, 2021; Muldoon et al, 2006; Miranda et al, 2022;	
one	Glutamate INCREASED	Glutamate INCREASED	Nievergelt et al, 2019 Maltais-Payette et al, 2018; Averill et al, 2017	
Ĕ	GABA DECREASED	GABA DECREASED	Averill et al, 2017; Wan et al, 2014	The
lor	TSH INCREASED	TSH INCREASED	He et al, 2021; Teixeira et al, 2020; Jung et al, 2019;	
	Estrogen DECREASED	Estrogen DECREASED	Paoli et al, 2021; Glover et al, 2015; Glover et al, 2012	Lif
	Testosterone DECREASED	Testosterone DECREASED	Deuter et al, 2021; Mulchahey et al, 2001; Josephs et al, 2017; Salam et al, 2012	

VENTION RESULTS • Eating a diet rich in acid producing foods produces a chronic low grade state of metabolic acidosis which shows up in blood and urine, increasing risk for	Citatio Alkaline Diet Carnuba et al, 2017; Souto et al, 2011; Michopoulos et al, 2016
• Eating a diet rich in acid producing foods produces a chronic low grade state of metabolic acidosis which shows up in blood and urine, increasing risk for	<u>Alkaline Diet</u> Carnuba et al, 2017; Souto et al, 2011; Michopoulos et al, 2016
 kaline Multi-mineral supplement [with Potassium (600mg), Calcium (500mg), Magnesium (200mg), Sodium (200mg), Copper (1mg), Zinc (5mg), Iron (5 mg), Chromium (60 μg), Molybdenum (80 μg), Selenium (30 μg)] → Significant improvements in both blood and urine pH resulted from intake of a full spectrum alkaline multimineral supplement twice a day with no major changes in diet. This would help improve metabolic and urine acidosis concerns with metabolic syndrome, diabetes, and PTSD. Vitamin B1: Thiamine is a critical vitamin involved in glucose metabolism, brain and mitochondrial function, and psychological stability. Deficiency is related to both lactic acidosis and metabolic acidosis conditions associated with metabolic disorders and could be deficient in those with PTSD Hydration: Increased mineral water intake was shown to have beneficial effects on blood pressure, triglycerides, glucose, and HDL cholesterol which can have a beneficial effect in reducing the acidic state produced in metabolic syndrome 	Multi-mineral supplement König et al., 2009 Hydration Costa-Vieira et al, 2019 Vitamin B1 Dhir et al, 2019
 Reduction of short chain fermentable carbohydrates through a low FODMAP diet helps to improve inflammatory symptoms in IBS. The low FODMAP diet REDUCES Bifidobacterium bacteria, so dosing of this probiotic species will need to be at a higher dose if this diet is prescribed for PTSD- IBS patients. Vitamin A: Vitamin A helps to improve intestinal lining integrity while reducing CRP levels Vitamin D: Vitamin D deficiency is found in those with IBS and supplementation is recommended based on levels from Serum Vitamin D testing. Vitamin D helps to improve intestinal lining integrity while reducing CRP levels. Vitamin D: Vitamin D deficiency is found in those with IBS and supplementation is recommended based on levels from Serum Vitamin D testing. Vitamin D helps to improve intestinal lining integrity while reducing CRP levels. Vitamin D is recommended at 2000 IU/day/minimum. Zinc: Zinc helps to restore gut mucosa and microbiome diversity Digestive Enzymes: Digestive enzymes will help with macronutrient absorption while also reducing intestinal permeability to enable better vitamin and mineral absorption. Probiotics: Increase of Bifidobacterium bacteria (spp, longus, animalis subsp Lactis) and Lactobacillus (spp, helveticus) probiotic species to help modulate PTSD symptoms and reduce dysbiosis. 	Low FODMAP Diet Algera et al, 2019; Staudacher and Whelan, 20 Digestive enzymes Resnick, 2010 Probiotics Lui, 2017 Vitamin A Farre et al, 2020 Vitamin D Khayyat and Attar, 2015; Farre et al, 2020 Zinc Skalny et al, 2021
Reduce Glutamate containing foods due to increased neurotoxicity	<u>Gluten free diet</u> Pietrzak et al, 2017
 Reduce Guttamate containing foods due to increased neurotoxicity Gluten Free Diet (also contains glutamate): Gluten free diet helps to reduce symptoms of psoriasis and increased intestinal permeability associated with PTSD Vitamin B6: Needed to help form GABA. GABA increases cortisol, which is helpful for those with low cortisol in PTSD Vitamin B12: This nutrient supports a strong blood brain barrier and good 1 carbon metabolism. Vitamin B12 is a methyl donor nutrient. Vitamin C: Vitamin C can help reduce neuroinflammation. Folate: This nutrient supports a strong blood brain barrier and good 1 carbon metabolism. Folate is a methyl donor nutrient. Magnesium L Threonate: Magnesium L Threonate (MgT) has enhanced ability to improve fear extinction in the brain. CoQ10: CoQ10 is cardioprotective and can help reduce hyperlipidemia in diabetic patients. This can be helpful with PTSD patients since they are at a higher risk for both metabolic syndrome and diabetes. Omega 3 Fatty Acids: Omega 3 fatty acids were attributed to reducing memory impairment in response to PTSD stressors in a rat model. Dietary Protein: Helps to normalize cortisol levels, especially after exercise Cruciferous vegetables: Cruciferous vegetables helps to repair detoxification pathways to help reduce neuroinflammation. 	Pietrzak et al, 2017 <u>Neuroinflammation</u> Coomes and McGuirk, 202. <u>Magnesium L Threonate</u> Mickley et al, 2013; Albumaria et al, 2013 Raizner, 2019 Dludla et al, 2020 <u>Vitamin B6</u> Stachowicz and Lebiedzins <u>Protein</u> Stachowicz and Lebiedzins <u>Omega 3s</u> Alquraan et al, 2019 <u>Vitamin B12</u> McKee et al, 2018 Stover et al, 2017 <u>Vitamin C</u> Vasefi et al, 2019 <u>Folate</u> McKee et al, 2018 Stover et al, 2017 <u>Vitamin C</u> Vasefi et al, 2017 <u>Vitamura et al, 2016</u> Higdon et al, 2007 <u>Cruciferous vegetables</u> Hodges and Minich, 2015; Nakamura et al, 2007
 Vitamin E, Tocotrienols: Vitamin E is protective against hypercholesterolemia and cardiovascular disease while also serving as an antioxidant. This vitamin can be helpful to reduce risk of comorbid conditions associated with PTSD. Hibiscus: Hibiscus sabdariffa (sour tea) has had beneficial effects in reducing blood pressure and normalizing cholesterol and triglycerides with those diagnosed with diabetes and metabolic syndrome. Given that PTSD mimics metabolic syndrome, this herb would be beneficial for cardiovascular related symptoms. Cannabis (THC): The endocannabinoid system is activated in PTSD where THC, the psychoactive ingredient of cannabis, has been shown to help modulate PTSD symptoms. 	Vitamin E Musa, 2021; Catagol and Ozer, 2012 <u>Hibiscus</u> Hudson, 2011 <u>Cannabis</u> Mayo et al, 2022
 Physical Therapy: PTSD is associated with increased risk for chronic pain. Physical therapy techniques combined with Cognitive Behavior Therapy (CBT) can help patient unlearn pain cycles and rebuild nervous system responses to fear and pain. Exercise: Helps to increase and normalize cortisol (helpful for those with PTSD with low cortisol) 	<u>Physical Therapy</u> Sueki et al, 2014 <u>Exercise</u> Stachowicz and Lebiedzinsi Hegberg et al., 2019

PTSD Genes/SNPs	MetS Genes/SNPs
PARK2 (Nievergelt et al, 2019)	PARK2 (Abou Ziki and Mani, 2016)
BDNF, rs6265, increases risk of PTSD in cancer (Chair et al, 2022)	BDNF, rs6265, increases risk of MetS (Rana et al, 2019; Abou Ziki and Mani, 2016)
COMT; rs4680 (Cornelis et al, 2012)	COMT, rs4680, associated with panic disorders and CVD (Mir et al, 2018; Zhao et al, 2021)
MTHFR C677T rs1801133, increases risk for MDD after childhood trauma and is also associated with reduce oxidative stress defense (Lok et al, 2013)	MTHFR C677T rs1801133, increases risk for obesity and high homocysteine levels (Fu et al, 2019)

CONCLUSION & LIMITATIONS

This research has produced extensive evidence for the association between PTSD and MetS along with evidence that both conditions are also associated with AD development. Critical genes associated with Parkinson's disease and one carbon metabolism helped to show the need to address biochemical and neurological dysfunctions in PTSD and MetS. Shifts in the Th1 to Th2 immunological response in PTSD also helped to show why PTSD can increase infections and risk for cancer/tumor development. Increased neuro-excitability as evidenced by increases in glutamate in both PTSD and MetS helped to show that addressing neuroinflammation is critical to the treatment in these conditions. Acid-base imbalances and obesity was noted in both PTSD and MetS whereas those in normal BMI categories with MetS have a higher risk of mortality likely because more medical attention is focused on those with MetS and obesity. Critical decreases in estrogen and testosterone were found in both PTSD which influences the ability to manage fear responses and MetS symptoms. The alkaline and low FODMAP diets along with critical micronutrients, physical therapy, and exercise were seen as positive interventions. Limitations to this research are present in the need to further establish more strength in these connections, more evaluation of the quality of research, and expanding on genomic connections. Future research is needed to continue validation of results.

REFERENCES & MORE INFORMATION

References and the full research paper is available by using your smart phone to scan the code to your right here.

If you have any further questions, please reach out to Dr. Jennifer Coomes at jcoomes@bastyr.edu or Jennifer@essencehealthandresearch.com.

ACKNOWLEDGEMENTS

マクノ

A sincere thank you goes out to Dr. Noel Aldrich for critical directional advisement in this research along with Maryland University of Integrative Health for their support in this endeavor. An additional thank you goes to Bastyr University for their support in presenting this invaluable research to the students, faculty, and staff.